

Informe final de investigación para optar al título de Ingeniero Agropecuario

Huella de carbono en sistemas agroforestales con café (*Coffea arabica*) en fincas cafetaleras, Jinotega periodo 2023 – 2024

Autor

Kener José Castro Lanzas

Tutor

M.Sc. Trinidad Germán Reyes Barreda

Estelí, mayo 2024

Este informe final de investigación fue aceptado en su presente forma por la Oficina de Investigación de la Dirección de Ciencias Agropecuarias (DCA) de la Universidad Nacional Francisco Luis Espinoza Pineda (UNFLEP), y aprobada por el honorable Comité Evaluador nombrado para tal efecto, como requisito parcial para optar al título profesional de: INGENIERO AGROPECUARIO

Tutor

M.Sc. Trinidad German Reyes Barreda

Comité Evaluador

Ph.D. Oscar Enrique Bustamante Morales M.Sc. Didier Gabriel Matey Fajardo

Ing. Byron Uriel Rojas Valverde

Sustentante

Br. Kener José Castro Lanzas

ÍNDICE

Contenido	Páginas
ÍNDICE DE TABLAS	i
ÍNDICE DE FIGURAS	ii
ÍNDICE DE ANEXOS	iii
DEDICATORIA	iv
AGRADECIMIENTO	V
RESUMEN	Vi
I. INTRODUCCIÓN	1
II. ANTECEDENTES	2
III. JUSTIFICACIÓN	3
IV. FORMULACIÓN DEL PROBLEMA	4
V. OBJETIVOS	5
5.1. Objetivo general	5
5.2. Objetivos específicos	5
VI. LIMITACIONES	6
VII. MARCO TEÓRICO	8
7.1. Descripción de efecto de gases invernadero	8
7.1.1. Dióxido de carbono	9
7.1.2. Óxido Nitroso	9
7.1.3 Metano	O

7.	.2.	Huella de carbono	.10
7.	.3.	Cool Farm Tool	.10
7.	4.	ArcGIS	.12
7.	.5.	Power Bi	.12
7.	.6.	Sistema Agroforestal	.13
V	III.	PREGUNTAS DIRECTRICES	.16
D	Χ.	DISEÑO METODOLÓGICO	.17
	9.1.	Ubicación Geográfica	.17
	9.2.	Tipo de paradigma de investigación	.17
	9.3.	Enfoque y alcance de la investigación	.17
	9.4.	Según su nivel de amplitud	.18
	9.5.	Universo, Población y muestra	.18
	9.6.	Definición de variables con su operacionalización	.19
	9.7.	Técnicas e instrumentos para la recolección de datos	.20
	9.8.	Validez o confiabilidad de los instrumentos	.20
	9.9.	Procedimientos para el análisis de datos	.20
	9.10). Consideraciones éticas	.21
X	. R	ESULTADOS Y DISCUSIÓN	.22
	10.1	. Finca La Chiripa	.23
	10.2	2. Finca Las Cabaña	.24
	10.3	3. Finca Buenos Aires	.26
	10.4	l. Comparación Final GEI	.29

10.5. Diferencia del estudio con otras investigaciones		31
XI.	CONCLUSIÓN	34
XII.	RECOMENDACIONES	35
XIII.	BIBLIOGRAFÍA	37
XIV.	ANEXOS	38

ÍNDICE DE TABLAS

Contenido	Páginas
Tabla 1. Cool Farm Tool	11
Tabla 2. Variables con su operacionalización	19
Tabla 3. Resultado final de la huella de carbono	22
Tabla 4. Registros utilizados para medir huella de carbono	22
Tabla 5. Registro de insumos agrícolas y desechos generados en finca La Chiripa	23
Tabla 6. Identificación de puntos de emisión de GEI en la finca La Chiripa	23
Tabla 7. Registro de insumos agrícolas y desechos generados en la finca Las Cab	añas 24
Tabla 8. Identificación de puntos de emisión GEI en la finca Las Cabañas	25
Tabla 9. Registro de insumos agrícolas y desechos generados en la finca Buenos	Aires 26
Tabla 10. Identificación de puntos de emisión GEI en la finca Buenos Aires	27
Tabla 11. Relación de Kg café oro-Emisiones	30

ÍNDICE DE FIGURAS

Contenido	Páginas
Figura 1. Gráfico de puntos de emisión finca La Chiripa	24
Figura 2. Gráfico de punto de emisión Finca Las Cabañas	26
Figura 3. Gráfico de puntos de emisión finca Buenos Aires	28
Figura 4. Comparación final de la huella de carbono de las fincas y sus ubicado	ciones29

ÍNDICE DE ANEXOS

Contenido	Páginas
Anexo 1. Sistema de registro y reporte GEI	38
Anexo 2. Registro de información de fincas	39
Anexo 3. Validación de información GEI	39
Anexo 5. Capacitación a trabajadores de finca	40
Anexo 4. Capacitación de personal administrativo finca Buenos Aires	40
Anexo 6. Capacitación a trabajadores	41
Anexo 7. Hoja de entrevista a trabajadores	41
Anexo 9. Visita a finca Buenos Aires	42
Anexo 8. Visita a plantaciones de la finca La Cabaña	42
Anexo 10. Dashboard de GEI	43
Anexo 11. Calculadora de huella de carbono	43

DEDICATORIA

Primeramente, a **DIOS** por darme vida, sabiduría, la persistencia y entendimiento para poder sobrepasar las adversidades y retos que sostuve durante mi recorrido de esta carrera hasta la culminación de esta investigación.

Este logro también se lo dedico a dos personas que influyeron mucho en mi carrera profesional y en el ámbito personal para lograr ser la persona que me he logrado convertir;

Me es grato hacer la mención de mi tío, Sr. Luis Enrique Lanzas Ruiz (Q.E.P.D), quien fue mi principal pilar en mis inicios de mi carrera profesional al inducirme en convertirme en un profesional de cambio, una persona con valores y con principios cristianos.

Agradezco a mi abuela, Sra. Calixta Elena Ruiz López (Q.E.P.D), por impulsarme desde edades tempranas para superar cada obstáculo que se me presentara, por corregirme, por la educación en casa que recibí de parte de ella y por el cariño que siempre me brindo.

A mi mamá, **María Azucena Lanzas Ruiz**, por brindarme apoyo en cada etapa de mi vida, por brindarme cariño, paciencia y alentarme cuando más lo necesitaba.

A mi esposa, **Tania Wagner Palacios Rodríguez**, por alentarme a continuar con mis estudios, por su apoyo constante, confianza y por ser un pilar fundamental en mi vida.

Kener José Castro Lanzas

AGRADECIMIENTO

Quiero expresar mis más sinceros agradecimientos:

A mi tutor **M.Sc. Trinidad German Reyes Barreda**, por todo su apoyo, consejos, enseñanzas y ser mi guía durante todo el proceso de la realización de la tesis.

A personal de **OLAM NICARAGUA S.A**, por mi estadía en las prácticas profesionales, que gracias a eso se me abrieron puertas en mi entorno profesional.

A mis muy queridos profesores en mi estadía universitaria por acompañarme en este proceso de enseñanzas y aprendizajes constantes para poder convertirme en un profesional de cambio.

A mis compañeros de clases que hemos compartido muchas experiencias inolvidables para poder lograr este paso tan importante en nuestra carrera.

Kener José Castro Lanzas

RESUMEN

La investigación examina la creciente preocupación de los consumidores sobre el impacto ambiental de sus decisiones de compra, particularmente en el contexto del café, y cómo esto ha llevado a un aumento en la demanda de información sobre la huella de carbono en la cadena de suministro. La investigación se centra en analizar la huella de carbono en sistemas agroforestales de café en fincas en Jinotega durante el período 2023-2024. Para llevar a cabo este análisis, se utilizó un enfoque no experimental combinado con herramientas como ArcGIS, Excel (Cool Farm Tool) y Power BI para recopilar, procesar y visualizar datos relacionados con las emisiones de carbono y el cultivo de café. Los resultados obtenidos revelaron diferencias significativas en las emisiones de CO2 entre las fincas estudiadas, destacando la importancia de implementar prácticas sostenibles en la producción agrícola. Se encontró que la Finca Buenos Aires tenía la mayor huella de carbono por su extensión territorial, aun así, si se valora minuciosamente nos damos cuenta que la Finca las Cabañas es la que está generando más emisiones, si detallamos la relación de CO₂e/kg de café verde. Estos hallazgos subrayan la necesidad de estrategias específicas para reducir las emisiones de gases de efecto invernadero en la caficultura. Además, se identificaron varios factores que influyen en las emisiones de CO2, tanto directos como indirectos, lo que destaca la importancia de adoptar un enfoque global para abordar la huella de carbono en la agricultura. Como resultado, se recomienda implementar medidas integrales para reducir las emisiones de CO₂ y promover la sostenibilidad en el sector cafetalero, que incluyen prácticas agrícolas regenerativas, mejoras en la eficiencia energética y conservación de los recursos naturales. Se sugieren acciones específicas para cada finca, como la agricultura de conservación en Buenos Aires, la reducción del uso de insumos agrícolas en La Chiripa y la conservación de recursos naturales en Las Cabañas, con el objetivo de mitigar la huella de carbono y fortalecer la sostenibilidad a largo plazo.

Palabras Claves: Huella de carbono, Dióxido de carbono, Óxido Nitroso, Metano, Cool Farm toll.

I. INTRODUCCIÓN

Los consumidores (Café) cada vez se muestran más interesados por el impacto que tienen en el cambio climático sus decisiones de compra, y cada vez demandan más información al respecto. La respuesta de los minoristas y las empresas consiste en recopilar y transmitir información acerca de las emisiones generadas de las actividades como la producción, el procesamiento, transporte, consumo de sus productos, y la eliminación de los residuos. Todo ello incluye una demanda cada vez mayor de información a sus proveedores. (Internacional, 2012)

La Calculadora de huella de carbono es considerada como un instrumento para medir, calcular e interpretar las emisiones de gases de efecto invernadero (GEI) de las actividades realizadas en el proceso de la cadena de suministro en su totalidad, es decir, desde la siembra hasta la exportación. (Internacional, 2012)

La agricultura contribuye al cambio climático porque emite a la atmósfera cantidades significativas de dióxido de carbono (CO2), metano (CH4) y óxido nitroso (N2O).

En la producción de café, es cada vez más importante crear modelos de cultivo que optimicen el uso del carbono y puedan generar ingresos por servicios ambientales en el futuro. Para lograrlo, se inicia con la medición de emisiones y capturas de carbono, analizando este equilibrio en diversas etapas del proceso de producción cafetalera.

Aunque actualmente no hay restricciones ni requisitos para reducir la huella de carbono derivada del cultivo de café, es probable que en el futuro la "Huella de Carbono" se vuelva un factor significativo. Este elemento podría ofrecer oportunidades de mercado para aquellos que, de manera responsable y voluntaria, tomen medidas en relación con este aspecto. (Isaza, 2014)

II. ANTECEDENTES

Cada día, el mundo consume alrededor de 3 mil millones de tazas de café. El café no es sólo un elemento vital presente en la vida cotidiana de un sin número de personas a nivel mundial, es también uno de los productos agrícolas más importantes comercializados internacionalmente y tiene un significativo impacto social y económico para 25 millones de familias en su mayoría pequeños agricultores que viven en más de 50 países productores del cultivo de café. (Samper, 2017)

Desde 1990, la producción global de café se ha incrementado más del 65 % debido a su alta demanda de consumo. Las regiones con mayor consumo de café son Europa, Asia-Oceanía y América del Norte que representan 33,22,19 % de consumo mundial, respectivamente. (ORGANIZATION, 2021)

La Huella de Carbono de la Industria del Café se creó como parte de un esfuerzo más amplio para abordar los aspectos ambientales de la producción y la sostenibilidad del café. (IPCC, 2007)

Según los argumentos de (Soliva, 2017) menciona que una de las dificultades que está afrontando nuestro planeta es el cambio climático pertinente al crecimiento excesivo de los gases de efecto invernadero causado por la acumulación de emisiones emitidas por las actividades que hacemos los seres humanos.

Los cambios climáticos globales provocados por la actividad humana se conocen como cambio climático; las naciones desarrolladas actualmente están haciendo las mayores contribuciones a este cambio.

III. JUSTIFICACIÓN

El cultivo del café es una industria importante en muchas partes del mundo y una fuente de degustación para muchas personas. Sin embargo, en la era actual de crecientes preocupaciones ambientales, es importante considerar el impacto que esta industria tiene en el medio ambiente. Este ensayo tiene como objetivo investigar y analizar la huella de carbono del cultivo de café, resaltar su importancia y posibles soluciones para reducir su impacto en el medio ambiente.

Con la creciente inquietud sobre el cambio climático y la necesidad de abordar las acciones humanas que generan emisiones de gases de efecto invernadero, el tema se vuelve más crucial que nunca. El cultivo de café es una de estas actividades, por lo que es esencial comprender su huella de carbono y desarrollar estrategias para su reducción.

Para abordar este tema, se utilizarán datos de investigaciones previas, informes científicos y análisis de prácticas agrícolas sostenibles. Se realizará un estudio en la finca Buenos Aires, Finca La Cabaña y Finca La Chiripa, perteneciente al Departamento de Jinotega, debido al manejo que se realiza en estas fincas.

La investigación se centrará en la recolección de datos de las actividades que se realizan en las labores del día a día, para después ser interpretadas y medidas mediante algoritmos que miden la huella de carbono.

Durante este proceso se realizarán diferentes actividades para tener una mayor exactitud de la huella de carbono. Se planea realizar un inventario de plantaciones en campo para tener mayor efectividad para gestionar diferentes actividades como: estimada cosecha, seguimiento sanitario y productivo de las plantaciones, gestión de recursos monetarios etc. Esto con el fin de tomar medidas para reducir la huella de carbono y optimizar los recursos de la finca.

IV. FORMULACIÓN DEL PROBLEMA

El Cambio Climático es una realidad que afecta a todos los seres vivos de la tierra y se ve intensificado por el aumento de las emisiones de gases de efecto invernadero procedentes de la actividad económica de los países altamente desarrollados.

Nicaragua no es un país que pueda considerarse contribuyente al cambio climático, ya que las emisiones nacionales no son estadísticamente significativas. Sin embargo, es un país muy frágil, susceptible a amenazas y riesgos para las personas, la biodiversidad y los recursos naturales, cuyas consecuencias pueden ser irreversibles en el largo plazo.

En Nicaragua, el sector agrícola es probablemente el más vulnerable, ya que es tecnológicamente inadecuado y altamente dependiente de las condiciones climáticas.

La temperatura y las precipitaciones son los factores más importantes para la producción de café, influyendo en la floración, la calidad del grano, el rendimiento y la aparición plagas y enfermedades.

Esto sugiere que las áreas donde se encuentran actualmente las plantaciones de café se volverán inadecuadas para las actividades cafetaleras en los próximos años.

V. OBJETIVOS

5.1. Objetivo general

Analizar la Huella de carbono en sistemas agroforestales con café (*Coffea arabica*) en fincas cafetaleras, Jinotega periodo 2023 – 2024

5.2. Objetivos específicos

Determinar los puntos de emisión dentro del cultivo de café mediante el cálculo de la huella de carbono en fincas cafetaleras

Comparar la huella de carbono en tres fincas cafetaleras de diferentes estratos de extensión

Diseñar un sistema de registro y reporte de datos que permita llevar un monitoreo a largo plazo de las emisiones de gases de efecto invernadero en fincas cafetaleras

VI. LIMITACIONES

Disponibilidad Limitada de Datos Históricos

Una de las principales limitaciones de este estudio radica en la disponibilidad de datos históricos. A pesar de haber recopilado datos valiosos para el período de estudio (2023-2024), me he enfrentado a la falta de información previa. Esto dificulta la realización de un análisis comparativo a largo plazo de la huella de carbono en la finca. Lamentablemente, no cuento con datos anteriores al año 2020 que permitan evaluar las tendencias y cambios en las emisiones de carbono a lo largo del tiempo.

Influencia de las Condiciones Climáticas y Ambientales

Una limitación adicional que considerar es la influencia de las condiciones climáticas y ambientales en la región de Jinotega. Durante el período de estudio, se produjeron eventos climáticos extremos, como sequías e inundaciones, que pudieron haber tenido un impacto significativo en las condiciones de crecimiento de las plantas y, por ende, en las emisiones y capturas de carbono en el sistema agroforestal. A pesar de mis esfuerzos por controlar estas variables, no pude eliminar por completo su influencia en los resultados de la investigación.

Estas limitaciones reflejan los desafíos que he enfrentado durante mi investigación y subrayan la necesidad de abordar estas cuestiones en futuros estudios para mejorar nuestra comprensión de la huella de carbono en sistemas agroforestales con café en Jinotega.

Limitaciones en la Georreferenciación de las Áreas de Estudio

Una limitación crítica en esta investigación se relaciona con la georreferenciación de las áreas específicas que estamos evaluando para calcular la huella de carbono en la finca, a pesar de nuestros esfuerzos por utilizar tecnología de geolocalización y sistemas de información geográfica (SIG) para mapear y delimitar las áreas de estudio con precisión, nos hemos enfrentado a limitaciones técnicas y logísticas.

La falta de acceso a tecnología de mapeo de alta precisión y la disponibilidad limitada de imágenes satelitales de alta resolución restringirán nuestra capacidad para georreferenciar las parcelas de manera precisa. Además, las condiciones climáticas y la topografía de la finca pueden afectar la calidad de las imágenes satelitales, lo que a su vez puede influir en la precisión del levantamiento.

VII. MARCO TEÓRICO

El magnifico país de Nicaragua es conocido por su café de alta calidad, cultivado en las regiones montañosas del norte y centro del país. El café nicaragüense, principalmente arábica, se resalta por su sabor suave y notas frutales. Los productores ejecutan prácticas sostenibles, y la industria cafetalera desempeña un papel crucial en la economía, brindando empleo a muchas comunidades. Alrededor de 400,000 personas se benefician de este impresionante cultivo.

Acorde a muchos estudios e investigaciones realizadas el cultivo de café en Nicaragua tiene sus raíces en la década de 1800, cuando los europeos introdujeron las primeras plantaciones de café en el país. Cuando la demanda mundial de café creció, Nicaragua se convirtió en un relevante productor, beneficiándose de sus condiciones climáticas ideales y tierras fértiles. Además de su rica historia, el cultivo de café en Nicaragua destaca por la diversidad de microclimas que influyen en las características únicas de su café. Las regiones montañosas, como Jinotega y Matagalpa, ofrecen altitudes ideales y temperaturas frescas, aportando al perfil de sabor del café nicaragüense.

Adicionalmente, la cultura del café en Nicaragua se ha convertido en un importante motor de desarrollo comunitario. Las cooperativas de agricultores fomentan la colaboración y la equidad, mejorando las condiciones de vida de las comunidades locales. La trazabilidad y transparencia en la cadena de suministro son valores fundamentales, permitiendo a los consumidores conocer el origen de su café y respaldar prácticas éticas. Esta combinación de factores ha consolidado la reputación del café nicaragüense en el mercado global, siendo reconocido no solo por su exquisito sabor, sino también por su compromiso con la sostenibilidad y el bienestar social.

7.1. Descripción de efecto de gases invernadero

La superficie terrestre está envuelta por una capa de gases que permite el ingreso de energía solar, calentando la tierra. Algunos de estos gases de efecto invernadero (GEI) obstaculizan la disipación de este calor al espacio. Este fenómeno natural mantiene la temperatura

promedio de la tierra por encima del punto de congelación del agua, posibilitando la vida tal

como la conocemos.

El aumento de la concentración de GEI en la atmósfera ha provocado el fenómeno de El

incremento de la concentración de gases de efecto invernadero (GEI) en la atmósfera ha

inducido el fenómeno del "efecto invernadero", dando lugar a alteraciones significativas en

las escalas climáticas terrestres. El aumento de dióxido de carbono (CO2) en la atmósfera se

asocia con eventos climáticos extremos, como inundaciones ocasionadas por huracanes, con

consecuencias lamentables tanto en términos humanos como económicos.

Los principales gases de efecto invernadero que poseemos son los siguientes, los cuales se

clasifican como hidrofluorocarbonos:

CO2: Dióxido de Carbono

N₂O: Óxido Nitroso

CH4: Metano

7.1.1. Dióxido de carbono

El dióxido de carbono (CO2) se destaca como un componente crucial, generado

principalmente por las acciones humanas al emplear combustibles fósiles para la producción

de energía y el cumplimiento de diversas necesidades sociales. La deforestación, alteraciones

en el uso del suelo y la emisión de metano derivada de actividades agrícolas también

contribuyen significativamente al fenómeno del cambio climático.

7.1.2. Óxido Nitroso

Las emisiones de óxido nitroso N2O son generadas por procesos naturales y por la lixiviación,

la volatilización y la escorrentía de fertilizantes nitrogenados, así mismo por la

descomposición de los residuos de cultivos y de animales.

7.1.3. **Metano**

El metano, también conocido como CH4, se libera durante la producción y transporte de

carbón, gas natural y petróleo, así como por la descomposición de residuos en vertederos. La

9

ganadería contribuye de manera importante a las emisiones de metano a través de las flatulencias de las vacas. Además, este gas puede tener un origen natural, como en pantanos, o generarse debido a la actividad de las termitas.

7.2. Huella de carbono

La huella de carbono se define comúnmente como la cantidad de gases de efecto invernadero liberados a la atmósfera debido a las actividades relacionadas con la producción o consumo de bienes y servicios humanos. Esta medida puede variar en su alcance, desde una perspectiva simple que solo considera las emisiones directas de CO2, hasta enfoques más complejos que abarcan todo el ciclo de vida de los gases de efecto invernadero. Esto incluye la extracción de materias primas, la fabricación del producto y su destino final, junto con los envases correspondientes. La medición se expresa en kilogramos o toneladas.

7.3. Cool Farm Tool

El desarrollo de la calculadora CFT comenzó en 2008 como una calculadora de balance de GEI, creada en Reino Unido, en una colaboración entre un grupo de investigación de Unilever y la Universidad de Aberdeen, en el laboratorio de Alimentación Saludable. La herramienta se desarrolló por primera vez como una hoja de cálculo de Excel y se publicó en 2011. (Hillier, 2011)

La metodología se determina utilizando modelos empíricos y factores de emisión que consideran las diferencias entre los sistemas de producción, las regiones y los climas, se basa en investigaciones empíricas de una amplia gama de conjuntos de datos internacionales publicados y métodos del IPCC. Se diseñó bajo los 23 parámetros de la metodología PAS 2050 y GHG Protocolo apoyadas en las normas ISO 14040 y 14044 sobre gestión ambiental y ACV de un producto.

La Cool Farm Tool es una herramienta de evaluación de sostenibilidad diseñada para ayudar a los agricultores y productores a medir y gestionar el impacto ambiental de sus prácticas agrícolas. Fue desarrollada por un consorcio de organizaciones y empresas, incluyendo la Sustainable Food Lab, la Université catholique de Louvain y otras.

La Cool Farm Tool se utiliza para calcular la huella de carbono y otros indicadores ambientales asociados con la producción agrícola. Los agricultores y productores pueden ingresar datos sobre sus prácticas agrícolas, como el uso de fertilizantes, la gestión del suelo, el uso de agua y otros factores relacionados con la producción. La herramienta luego genera un informe que muestra el impacto ambiental de esas prácticas en términos de emisiones de gases de efecto invernadero y otros indicadores clave.

En el caso del cultivo de café, la Cool Farm Tool puede ser una herramienta útil para evaluar y mejorar la sostenibilidad de las operaciones de producción de café. Los productores de café pueden utilizar la herramienta para identificar áreas donde pueden reducir sus emisiones de carbono, mejorar la gestión del suelo y del agua, en general adoptar prácticas más sostenibles.

Tabla 1. Cool Farm Tool

Características principales de la	calculadora Cool Farm Tool (CFT).
Institución de desarrollo	University of Aberdeen (UK) en asociación con the Sustainable Food Lab and Unilever Sustainable Agriculture Advisory Board (SAAB).
Persona a cargo Dirección de correo electrónico Año de publicación	Jon Hillier (Aberdeen University) <u>j.hillier@abdn.ac.uk</u> 2011
Sitio web	www.coolfarmtool.org/coolfarmtool/greenhouse-gases/
Objetivo	Orientado al mercado y al producto
Aplicación Global	Si
Enfoque agro-ecosistémico	No
Producto especifico	Si
Contabiliza diferentes usos de la tierra	Limitado
Contabiliza balances de C	Si
Contabiliza stocks de C	Si
Contabiliza emisiones fuera del lote/ establecimiento	Si
Contabiliza uso de combustibles fósiles y energía	Si
Contabiliza uso de fertilizantes y plaguicidas	Si
Alcance temporal	Campaña/periodo
Tiempo requerido para realizar el análisis	Medio

Características principales de la calculadora Cool Farm Tool (CFT).			
Habilidad requerida para usar la	Media		
herramienta	ivicuia		
Uso amigable	Si		
Interfaz/ formato de presentación	Web o Excel		
Uso gratuito indefinido No (formato Web) / Si (formato Excel)			

7.4. ArcGIS

ArcGIS es una poderosa plataforma que facilita la recopilación, organización, administración y análisis de información geográfica a nivel mundial. Utilizado en diversos sectores como gobierno, negocios, ciencia, educación y medios, ArcGIS permite la creación de mapas interactivos que van más allá de la simple visualización de datos. Estos mapas se convierten en herramientas para comprender patrones, relaciones, realizar análisis, resolver problemas específicos, realizar un seguimiento del estado y comunicar ideas de manera efectiva. En resumen, ArcGIS es una valiosa herramienta para aprovechar el conocimiento geográfico en diversas aplicaciones.

7.5. Power Bi

Según los datos proporcionados por (Microsoft, 2013) Power BI es una suite de herramientas de análisis empresarial desarrollada por Microsoft que permite a las organizaciones visualizar sus datos y compartir información de manera efectiva. Con Power BI, puedes conectar, analizar y compartir información a través de paneles interactivos, informes y dashboards.

Se puede conectar a una amplia variedad de fuentes de datos, como bases de datos, servicios en la nube, archivos Excel, sitios web etc.

Fue anunciado por primera vez por Microsoft en septiembre de 2013. Desde entonces, ha experimentado varias actualizaciones y mejoras. El lanzamiento inicial se centró en las capacidades de autoservicio para el análisis de datos y la creación de informes interactivos. Desde entonces, Power BI se ha convertido en una plataforma integral de análisis empresarial que abarca la visualización de datos, el análisis predictivo, la inteligencia empresarial, y más. (Microsoft, 2013)

7.6. Sistema Agroforestal

La agroforestería se refiere a un sistema ancestral de uso de la tierra, donde los árboles se integran espacial o temporalmente con animales o cultivos agrícolas, combinando aspectos de agricultura y forestería en unidades de tierra sustentables.

Mitigar el cambio climático implica la remoción de emisiones de gases de efecto invernadero mediante la acumulación en biomasa y/o suelo en ecosistemas terrestres. Los sistemas agroforestales (SAF) bien diseñados y gestionados actúan como tecnologías "ganar-ganar", aumentando la producción y proporcionando servicios ambientales.

El uso de árboles y arbustos en los sistemas agrícolas ayuda a afrontar el triple reto de garantizar la seguridad alimentaria, mitigar y reducir la vulnerabilidad ante el cambio climático y aumentar la adaptabilidad de los sistemas agrícolas al mismo tiempo. La presencia de árboles en sistemas agrícolas puede reportar mayores ingresos y ayudar a diversificar la producción, reduciendo así el riesgo relacionado con la producción agrícola y la caída de los mercados. Esto será cada vez más importante a medida que los impactos del cambio climático se hagan más pronunciados. Los árboles y los arbustos pueden reducir los efectos de los fenómenos climáticos extremos, como las fuertes lluvias, sequías y huracanes. Evitan la erosión, estabilizan los suelos, aumentan los índices de infiltración y detienen la degradación de la tierra. Pueden enriquecer la biodiversidad en el paisaje y aumentar la estabilidad del ecosistema.

Los árboles pueden mejorar la fertilidad del suelo y la humedad de este, al aumentar la presencia de materia orgánica. Los árboles y arbustos leguminosos nitrificantes pueden ser especialmente importantes para la fertilidad del suelo, allí donde el acceso a fertilizantes minerales es limitado. Una mejor fertilidad del suelo tiende a aumentar la productividad agrícola y podría permitir una mayor flexibilidad en los tipos de cultivos que pueden realizarse. Los sistemas agróforestales tienden a secuestrar mayores cantidades de carbono que los sistemas agrícolas sin árboles. (Altieri, 1999)

La plantación de árboles en tierras agrícolas es relativamente eficiente y rentable, comparada con otras estrategias de mitigación, y aporta una serie de beneficios colaterales importantes para lograr mejores medios de vida entre las familias rurales y una mejor adaptación al clima.

Algunos de los beneficios de emplear árboles de sombra en la producción de café son:

Fijación de nitrógeno: El uso de especies leguminosas de sombra, como *Erythrina* poeppigiana, *Inga sp.*, y *Gliricidia sepium*, tiene un efecto sobre las tasas de fijación de nitrógeno.

Los árboles de sombra pueden producir hasta 14 Ton/ha/año de hojarasca y restos de poda, que pueden producir hasta 340 kg N/ha/año. Sin embargo, la fijación de nitrógeno por la sombra de los árboles de leguminosas cultivadas a una densidad de 100 a 300 árboles/ha no excede los 60 kg N/ha/año.

El reciclaje de nutrientes: Los árboles pueden afectar el nivel de nutrientes del suelo al explotar las reservas minerales más profundas de la roca parental y recuperar los lixiviados y depositarlos sobre la superficie como humus. Esta materia orgánica aumenta el contenido de humus del suelo, el cual a su vez aumenta su capacidad de intercambio de cationes y disminuye las pérdidas de nutrientes. (Altieri, 1999)

Mejora de las propiedades físicas del suelo:

Los árboles tienen la capacidad de potenciar las propiedades físicas del suelo, siendo la estructura del suelo especialmente beneficiada. Este mejoramiento se logra mediante el aumento de materia orgánica, como hojas y raíces, la acción disociadora de las raíces de los árboles y la actividad de los microrganismos. Estos factores contribuyen al desarrollo de agregados del suelo más estables.

Regulación de la temperatura y la velocidad del viento: Los árboles desempeñan un papel en la moderación de los cambios de temperatura, resultando en máximas más bajas y mínimas más altas bajo su dosel en comparación con áreas abiertas. La disminución de la temperatura y la reducción de los movimientos del aire, gracias a la cobertura arbórea, contribuyen a

disminuir la evaporación promedio. Asimismo, se observa una mayor humedad relativa debajo de los árboles en comparación con las zonas abiertas.

Los árboles de sombra reducen el estrés de café mejorando las condiciones climáticas adversas. Por ejemplo, los árboles de sombra amortiguan temperaturas extremas altas y bajas hasta 5°C. (Altieri, 1999)

VIII. PREGUNTAS DIRECTRICES

En el contexto de la creciente conciencia ambiental y la necesidad de abordar los desafíos del cambio climático, la evaluación de la huella de carbono en sectores específicos se ha vuelto imperativa. En este sentido, me enfocare en tres fincas cafetaleras **Buenos Aires**, **La Chiripa**, **Las Cabañas**; Explorando las diversas dimensiones de su huella de carbono. Esta investigación no solo busca comprender el impacto ambiental asociado a las prácticas agrícolas, procesos de producción y transporte en la finca, sino también diseñar estrategias sostenibles que puedan mitigar dicha huella.

A través de preguntas directrices cuidadosamente diseñadas, pretendiendo obtener conocimientos valiosos que contribuirán a un enfoque más consciente y responsable en la gestión ambiental de estas fincas cafetaleras.

¿Están al tanto del significado de Huella de Carbono?

¿Están conscientes del impacto ambiental de las prácticas agrícolas que se llevan a cabo en la finca y cómo pueden influir en las emisiones de carbono?

¿Cuánto conocimiento tienen sobre cómo los diferentes procesos de producción, desde la cosecha hasta el procesamiento del café, afectan la huella de carbono de la finca?

¿Están familiarizados con las prácticas de manejo de residuos en la finca y cómo estas pueden desempeñar un papel en la reducción de la huella de carbono?

¿Tienen conocimiento de las iniciativas o prácticas sostenibles en la finca que se han implementado para reducir la huella de carbono y han observado algún impacto?

¿Cómo se aborda la concientización y educación ambiental entre los trabajadores de la finca para que estén informados sobre la minimización de la huella de carbono?

¿Tienen percepción de cómo la huella de carbono de la finca afecta a la comunidad local y están conscientes de las medidas tomadas para mitigar posibles impactos negativos?

IX. DISEÑO METODOLÓGICO

9.1. Ubicación Geográfica

El estudio se estará efectuando en tres fincas, ubicadas en las comunidades de La Virgen, Montecristo y la sotana perteneciente al municipio de Jinotega, San Rafael del Norte departamento de Jinotega, con las siguientes Coordenadas Geográficas, **Finca Buenos Aires:** Latitud: 13.317167 Longitud: -85.843756, **Finca La Chiripa:** Latitud: 13.299635 Longitud: -86.087258, **Finca Las Cabañas:** Latitud: 13.221719 Longitud: -85.812174.

9.2. Tipo de paradigma de investigación

En el marco de esta investigación sobre la huella de carbono se ha adoptado deliberadamente el paradigma **positivista** como enfoque metodológico fundamental. Esta elección se basa en la convicción de que la aplicación de métodos cuantitativos y la búsqueda de datos empíricos rigurosos son esenciales para obtener una comprensión objetiva y medible de la contribución de este sistema agroforestal al cambio climático. Al adherir al paradigma positivista, nuestra investigación se centra en la recolección precisa de datos de emisiones de carbono, el análisis estadístico de resultados y la evaluación cuantitativa de las prácticas agrícolas en juego. Esta elección metodológica permite una evaluación científicamente sólida de la sostenibilidad ambiental de los sistemas agroforestales de café en esta región, contribuyendo así a la base de conocimientos sobre prácticas agrícolas responsables y al manejo sostenible de los recursos naturales.

9.3. Enfoque y alcance de la investigación

La presente investigación se centrará en un enfoque **cuantitativo** con el objetivo de proporcionar una evaluación rigurosa y numérica de la huella de carbono. Esta elección metodológica se justifica por la necesidad de medir y cuantificar de manera precisa las emisiones de gases de efecto invernadero. Un enfoque cuantitativo permitirá la recolección sistemática de datos numéricos que respalden la identificación de patrones, tendencias y relaciones significativas en cuanto a la huella de carbono en este contexto particular. Además, al utilizar métodos de muestreo representativo, se podrá obtener una imagen cuantitativa

sólida de la contribución de esta práctica agrícola a la mitigación o generación de emisiones de gases de efecto invernadero, lo que resulta fundamental para la toma de decisiones informadas en términos de sostenibilidad y gestión ambiental en la región. La finalidad última de este estudio es contribuir al conocimiento científico sobre las prácticas agrícolas sostenibles y proporcionar información valiosa que pueda orientar políticas y acciones concretas para reducir la huella de carbono en la producción de café en la finca Buenos Aires y, por ende, promover la sostenibilidad ambiental en la región cafetalera.

9.4. Según su nivel de amplitud

El presente estudio se fundamenta en un enfoque longitudinal retrospectivo con el propósito de abordar la evaluación de la huella de carbono en tres fincas cafetaleras durante el período que abarca desde el año 2023 hasta 2024. La elección de un diseño longitudinal se justifica por la naturaleza dinámica y evolutiva de la huella de carbono, que puede verse influida por múltiples factores a lo largo del tiempo. Al seguir sistemáticamente la evolución de las emisiones y absorciones de carbono en un mismo lugar y sistema durante varios años, este enfoque permitirá no solo identificar las variaciones estacionales o interanuales en la huella de carbono, sino también comprender las tendencias a largo plazo y las posibles influencias de prácticas agrícolas, cambios climáticos y otras variables relevantes. De esta manera, se podrá obtener una visión integral y completa de la sostenibilidad ambiental de la producción de café en esta finca, y proporcionar datos valiosos para la toma de decisiones informadas y estrategias de mitigación a lo largo del tiempo.

9.5. Universo, Población y muestra

En este estudio, el **universo** estará delimitado por la totalidad de fincas Cafetaleras que integran este enorme rubro potencial de la agricultura en Nicaragua.

La población se centrará en un clúster de productores certificados el cual el total de estos son 1000 productores con el sello de Rainforest Alliance en el departamento de Jinotega La muestra seleccionada para este análisis comprenderá tres fincas de tres estratos diferentes de extensión, para comprender con más claridad la dimensión de un estudio de huella de carbono.

9.6. Definición de variables con su operacionalización.

Tabla 2. Variables con su operacionalización

Objetivos específicos	Variable	Definición conceptual	Subvariable	Indicadores	Técnicas de recolección de información	Fuente de información
Determinar los puntos de emisión dentro del cultivo de café mediante el cálculo de la huella de carbono en fincas cafetaleras.	Huella de carbono en el cultivo de café	Los puntos de emisión se refieren a los lugares o actividades específicas en el proceso de cultivo de café donde se liberan gases de efecto invernadero.	Puntos de emisión	1.Kwt 2. QQ 3. Litros Gasolina	Entrevistas	Hoja de campo
Comparar la huella de carbono en tres fincas cafetaleras de diferentes estratos de extensión.	Dimensión de la huella de carbono	Al comparar la huella de carbono en tres fincas tengo un panorama más amplio del impacto que tiene las repercusiones por el calentamiento global	Cálculo de emisiones	1. Toneladas o Kg.	Análisis documental	Hoja de cálculo en Excel
Diseñar un sistema de registro y reporte de datos que permita llevar un monitoreo a largo plazo de las emisiones de gases de efecto invernadero en fincas cafetaleras	Sistema de Registro y Reporte	Un conjunto de procesos y herramientas para capturar, almacenar y comunicar datos sobre las emisiones de gases de efecto invernadero.	Procesos y Herramientas	1.Eficiencia del sistema de registro y reporte.	Análisis documental	Hojas de cálculo en Excel

9.7. Técnicas e instrumentos para la recolección de datos

Para alcanzar los objetivos específicos de mi estudio, utilizaré una combinación de métodos y técnicas de investigación basada en:

Analís documental

Entrevistas.

Hojas de campo.

9.8. Validez o confiabilidad de los instrumentos

La utilización de hojas de campo y entrevistas en campo como herramientas para recopilar datos sobre la huella de carbono en una finca cafetalera aporta un enfoque práctico y directo. Las hojas de campo permitirán registrar de manera sistemática información relevante, como prácticas agrícolas, consumo de recursos y actividades relacionadas con las emisiones de carbono. Complementariamente, las entrevistas en campo facilitarán la obtención de datos cualitativos valiosos al involucrar a los actores clave, como productor y trabajadores, para obtener percepciones detalladas sobre las prácticas sostenibles y los posibles puntos de mejora. Esta combinación de métodos brindará una visión integral de la huella de carbono en la finca, fortaleciendo la confiabilidad y validez de los resultados obtenidos.

9.9. Procedimientos para el análisis de datos

En el contexto de mi investigación sobre la huella de carbono, mi enfoque se centrará en un enfoque no experimental. Utilizaré una combinación de software especializado, como ArcGIS para el análisis geoespacial de la cobertura forestal y la topografía, Excel (Cool Farm Tool) para gestionar y procesar datos tabulares relacionados con las emisiones de carbono y el cultivo de café, y Power BI para visualizar y presentar de manera efectiva los resultados. A través de esta metodología, se busca evaluar y entender el impacto ambiental de la producción de café en un entorno agroforestal específico, contribuyendo así al conocimiento existente en la gestión sostenible de recursos naturales y la mitigación del cambio climático en la región.

La validación de los datos se realizará mediante el programa Excel mediante plantillas, donde recopilaré la información registrada de la finca, para después ser procesada mediante un

Software de validación de la huella de carbono (Cool Farm Tool) asegurando la precisión y coherencia de los registros. Finalmente, para el procesamiento y la generación de informes detallados, utilizaré el programa Power BI, que permitirá una presentación visual y eficiente de los resultados de la investigación. Este conjunto de métodos y herramientas se utilizará en conjunto para obtener una visión completa y detallada de la huella de carbono, contribuyendo así al conocimiento en el área de la gestión sostenible y la mitigación del cambio climático en la agricultura.

9.10. Consideraciones éticas

Durante el estudio se dará prioridad a aspectos éticos de alta importancia. Esto incluye obtener el consentimiento informado de los propietarios de la finca y colaborar estrechamente con el personal de la finca. Asimismo, se asegurará la confidencialidad de la información recolectada, incluyendo datos personales, y se cumplirán las regulaciones y estándares éticos aplicables en la gestión de datos y la presentación de resultados. Además, se preservará y protegerá el entorno natural durante el proceso de investigación, minimizando cualquier impacto adverso en los recursos naturales circundantes. La transparencia y la honestidad serán principios clave al comunicar los hallazgos, independientemente de su naturaleza, y se atribuirá correctamente el trabajo previamente realizado por otros investigadores en el campo.

X. RESULTADOS Y DISCUSIÓN

A partir de los exhaustivos procedimientos que se realizaron tanto en campo como en la interpretación de datos se lograron obtener resultados concluyentes y estratégicos para medir y cuantificar la huella de carbono en fincas Cafetaleras.

Obteniendo los siguientes datos de emisiones por fincas de estudio:

Los resultados se obtuvieron mediante la recopilación de datos en campo con personal administrativos de la finca, donde se consolidaron aspectos relevantes que influyen en la huella de carbono como:

Tabla 3. Resultado final de la huella de carbono

Fincas Finca	Hectáreas	Manzanas	Emisiones de CO2	Emisiones de NO2	Emisiones de CH4	Emisiones totales del área, tons CO2 eq
Buenos Aires	255.66	363.80	1,038.00	125.77	41.95	1,205.72
Finca La Chiripa	35.13	49.99	235.58	18.91	7.70	262.19
Finca Las Cabañas	11.5	16.36	59.70	5.02	1.34	66.05
					tons CO2 eq	1,533.97

Tabla 4. Registros utilizados para medir huella de carbono

Inventario de plantaciones Estimados de cosecha Registro de consumo de energía

Registro de aplicación de fertilizantes Registro de aplicación de agroquímicos

Registros utilizados

Registro de aplicación de enmiendas

10.1. Finca La Chiripa

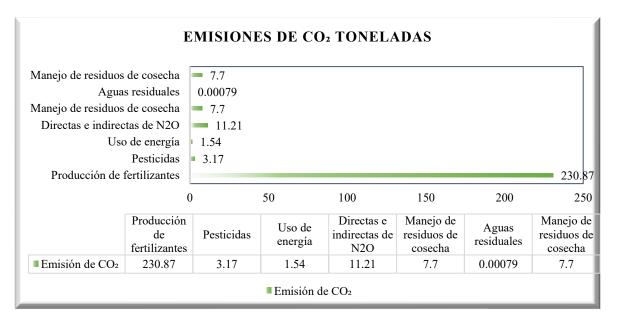
Finca cafetalera ubicada en la comunidad de La Sotana, es una finca mediana, semitecnificada, ya que cuenta con ciertas tecnologías que facilitan las actividades en la finca y el rendimiento de esta.

Las principales labores e insumos que se identificaron fueron las siguientes:

Tabla 5. Registro de insumos agrícolas y desechos generados en finca La Chiripa

Producto	Referencia	Unidad de medidas	Cantidad
18%N 5% K2O 15% P2O5	Fertilizante	QQ	250
NPK 17%N 3% K2O 20% P2O5	Fertilizante	QQ	250
NPK 17%N 4% K2O 26% P2O5	Fertilizante	QQ	250
18% N; 46% P2O5	Fertilizante	QQ	10
Cipermetrina	Insecticida	Litros	20
Amistar	Fungicida	Litros	36
Opera	Fungicida	Litros	65
Glifosato	Herbicida	Litros	180
Oxifluorfen	Herbicida	Litros	180
Pulpa	Residuos de cosecha	QQ	1600
Agua miel	Residuos de cosecha	Litros	350,000.00

En base a esta información se validó en el software Cool Farm tool y procesado en el programa Power bi, obteniendo como resultado los siguientes datos:


Tabla 6. Identificación de puntos de emisión de GEI en la finca La Chiripa

Emisiones totales del área, tons CO2 eq		
CO2	Emisiones totales del área, tons CO2 eq	
Producción de fertilizantes	230.87	
Pesticidas	3.17	
Uso de energía	1.54	
Total	235.58	
N2O	Emisiones totales del área, tons CO2 eq	
Directas e indirectas de N2O	11.21	
Manejo de residuos de cosecha	7.70	
Total	18.91	

Emisiones totales del área, tons CO2 eq			
CH4 Emisiones totales del area, tons CO2 eq			
Aguas residuales			
Manejo de residuos de cosecha			
Total	7.70		

En este grafico representa la cantidad de emisiones emitidas por cada actividad que se realiza en la finca, encontrando en mayor porcentaje la cantidad de emisiones de Co2 por el uso de fertilizantes.

Figura 1. Gráfico de puntos de emisión finca La Chiripa

10.2. Finca Las Cabaña

Finca Las Cabañas, Ubicada en la comunidad de Montecristo perteneciente al departamento de Jinotega, el resultado final de las emisiones fue de 66.05 tons CO2 eq.

Tabla 7. Registro de insumos agrícolas y desechos generados en la finca Las Cabañas

Producto	Referencia	Unidad de medidas	Cantidad
18%N 6% K2O 12% P2O5	Fertilizante	QQ	60
15%N 30% K2O 15% P2O5	Fertilizante	QQ	60

Producto	Referencia	Unidad de medidas	Cantidad
17%N 6% K2O 18% P2O5	Fertilizante	QQ	60
Endosulfan	Insecticida	Litros	11
Cipermetrina	Insecticida	Litros	5
Alto 10	Fungicida	Litros	10
carbendazim	Fungicida	Litros	5
Glifosato	Herbicida	Litros	180
Pulpa	Residuos de cosecha	QQ	280
Agua miel	Residuos de cosecha	Litros	100,000.00

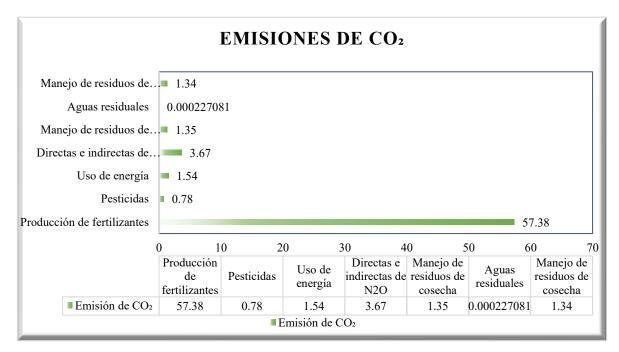

En base a esta información se validó en el software Cool Farm tool y procesado en el programa Power bi, obteniendo como resultado los siguientes datos:

Tabla 8. Identificación de puntos de emisión GEI en la finca Las Cabañas

Emisiones totales del área, tons CO2 eq		
CO2	Emisiones totales del área, tons CO2 eq	
Producción de fertilizantes	57.38	
Pesticidas	0.78	
Uso de energía	1.54	
Total	59.70	
N2O	Emisiones totales del área, tons CO2 eq	
Directas e indirectas de N2O	3.67	
Manejo de residuos de cosecha	1.35	
Total	5.02	
CH4	Emisiones totales del área, tons CO2 eq	
Aguas residuales	0.000227081	
Manejo de residuos de cosecha	1.34	
Total	1.34	

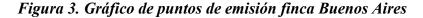
En esta figura se representa la cantidad de emisiones emitidas por cada actividad que se realiza en la finca, encontrando en mayor porcentaje la cantidad de emisiones de Co2 por el uso de fertilizantes.

Figura 2. Gráfico de punto de emisión Finca Las Cabañas

10.3. Finca Buenos Aires

Finca Buenos Aires, ubicada en la comunidad de La Virgen # 1 perteneciente al departamento de Jinotega, el resultado final de las emisiones fue de **1,205.72 tons** CO2 eq.

Tabla 9. Registro de insumos agrícolas y desechos generados en la finca Buenos Aires


Producto	Referencia	Unidad de medidas	Cantida d
18-46-0	Fertilizante	QQ	38
18-4-20-2.8(S)-5(Ca)-2.3(Mg)-0-1(B)	Fertilizante	QQ	664
20.20-0-13.60-4.77S-1.92Ca-2.68Mg 1.10Zn-0.5B	Fertilizante	QQ	1,001
20-0-20-2.8(S)-7.70(Ca)-0.4(Mg)-0.1(B)	Fertilizante	QQ	1,068
20-4-16-1S-0.93Ca-1.89Mg	Fertilizante	QQ	1,134
21-10-9.67-1.10S-1.02Ca-1.50Mg	Fertilizante	QQ	277
24.1-15-5.8-5.4(Ca)-0.2(Mg)-0.1(B)	Fertilizante	QQ	147
46.0.0	Fertilizante	QQ	14
Aztrostar 25-SC	Fungicida	Litros	10
Bumper 25 EC	Fungicida	Litros	92
Carbendazim 50 SC	Fungicida	Litros	335
Orquesta Combi	Fungicida	Litros	16

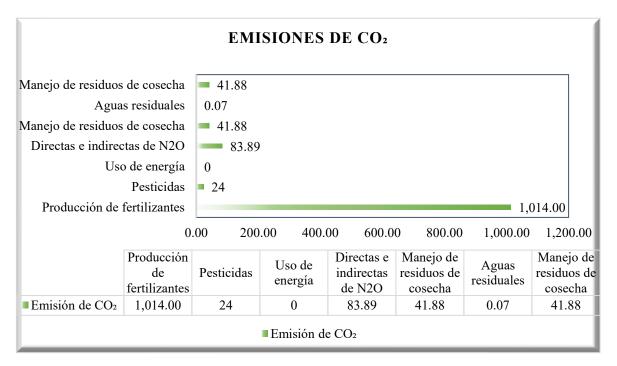

Producto	Referencia	Unidad de medidas	Cantida d
Sphere Max 53.5 SC	Fungicida	Litros	34
Tebutriazell 30 EC	Fungicida	Litros	6
Bralic 12.5 EC	Insecticida	Litros	100
Cipermetrina 25EC	Insecticida	Litros	12
Glifosan 35.6 SL	Herbicida	Litros	1,175
Oxiflu 24 EC	Herbicida	Litros	127
Rafaga 20 SL	Herbicida	Litros	108
Gromerxone 20 SL	Herbicida	Litros	104
Pulpa	Desechos de cosecha	QQ	8,698
Agua Miel	Desechos de cosecha	Litros	32,617,5 00

Tabla 10. Identificación de puntos de emisión GEI en la finca Buenos Aires

En base a esta información se validó en el software **Cool Farm tool** y procesado en el programa **Power bi**, obteniendo como resultado los siguientes datos:

Emisiones totales del área, tons CO2 eq		
CO2	Emisiones totales del área, tons CO2 eq	
Producción de fertilizantes	1,014.00	
Pesticidas	24.00	
Uso de energía	0.00	
Total	1,038.00	
N2O	Emisiones totales del área, tons CO2 eq	
Directas e indirectas de N2O	83.89	
Manejo de residuos de cosecha	41.88	
Total	125.77	
CH4	Emisiones totales del área, tons CO2 eq	
Aguas residuales	0.07	
Total	41.95	

Este grafico representa la cantidad de emisiones emitidas por cada actividad que se realiza en la finca, encontrando en mayor porcentaje la cantidad de emisiones de Co2 por el uso de fertilizantes

10.4. Comparación Final GEI

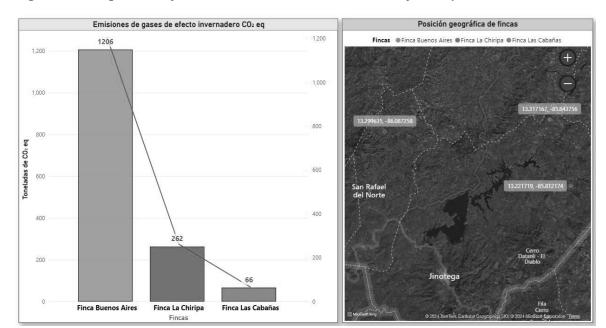


Figura 4. Comparación final de la huella de carbono de las fincas y sus ubicaciones.

Como resultado final tenemos la captura de la huella de carbono de las tres fincas en las que se realizó este intensivo estudio (Finca Buenos Aires, Finca La Chiripa, Finca Las Caballas), las cuales nos refleja que el mayor índice de emisiones es debido a la aplicación por fertilizante nitrogenados como por ejemplo la aplicación de **Urea 46%** y por desechos de cosecha como lo es la pulpa y el aguamiel generada en el proceso del lavado del mucilago de café.

Para evaluar la huella de carbono de las fincas cafetaleras Buenos Aires, La Chiripa y Las Cabañas, realizamos un análisis exhaustivo de sus emisiones de CO₂ equivalentes (CO₂ eq) en función de su producción de café oro. La metodología seguida para llegar a estos resultados se detalla a continuación: Encontrando los siguientes datos:

Tabla 11. Relación de Kg café oro-Emisiones

Finca	Manzanas	Producción QQ Oro	Kg Café oro/ KG Emisión de CO2
Buenos Aires	363.8	10,878	2.41
La Chiripa	49.99	1,380	4.13
Las Cabañas	16.36	301	4.77

La primera etapa del estudio consistió en la recopilación de datos fundamentales de cada finca, incluyendo la extensión territorial en manzanas, la producción total de café oro en quintales (QQ) y la relación de kilogramos de café oro producidos por kilogramo de emisión de CO₂.

Para determinar las emisiones totales de CO₂ eq, se aplicaron factores de emisión específicos a cada finca, basados en su producción de café oro. Se utilizó la fórmula:

Emisiones de CO₂ eq=

Producción de Cafe' Oro (kg)×Factor de Emisión (kg CO2 eq/kg Cafe' Oro)

Los resultados mostraron que, aunque la Finca Buenos Aires emite una mayor cantidad total de CO₂ debido a su mayor tamaño y producción, la Finca Las Cabañas presenta un mayor impacto en términos de emisiones por kilogramo de café oro producido.

Estos resultados indican que la eficiencia en la producción de café oro, en relación a las emisiones de CO₂, varía significativamente entre las fincas. Las Cabañas, aunque más pequeña en extensión y producción total, resulta ser la menos eficiente, generando mayores emisiones de CO₂ por cada kilogramo de café producido. Este análisis nos permite concluir que, a pesar de que la Finca Buenos Aires emite más CO₂ en términos absolutos, el impacto relativo por kilogramo de café es menor comparado con Las Cabañas. Por lo tanto, se debe considerar tanto el total de emisiones como la eficiencia productiva al evaluar la huella de carbono de las fincas.

La identificación de estas diferencias es crucial para implementar estrategias de mitigación adecuadas. Las fincas como Las Cabañas pueden beneficiarse significativamente de prácticas sostenibles que reduzcan su huella de carbono relativa.

10.5. Diferencia del estudio con otras investigaciones

El análisis que realizó en las tres fincas utilizando la herramienta Cool Farm Tool proporcionó una visión detallada de las emisiones de gases de efecto invernadero (GEI) asociadas a la producción de café en diferentes contextos. A continuación, se discuten los resultados obtenidos en comparación con estudios similares realizados en otras regiones de América Latina, destacando diferencias, similitudes y posibles razones detrás de las variaciones observadas.

Los resultados de nuestro análisis se resumen en las siguientes emisiones totales y específicas de CO₂e por kilogramo de café oro producido:

Tabla 12. Emisiones especificas

	Emisiones Totales	Emisiones especificas
Finca Buenos Aires	1,205.72 toneladas de CO ₂ e	2.41 kg CO ₂ e/kg de café oro
Finca La Chiripa	262.19 toneladas de CO ₂ e	4.13 kg CO ₂ e/kg de café oro
Finca Las Cabañas	66.05 toneladas de CO ₂ e	4.77 kg CO ₂ e/kg de café oro

Estudios previos en Costa Rica encontraron que la producción de café emite aproximadamente 4.82 kg CO₂e/kg de café verde. En Colombia, las emisiones variaron entre 3.9 y 5.1 kg CO₂e/kg de café verde. Comparando estos resultados con nuestras fincas, observamos que: Las fincas **La Chiripa y Las Cabañas** presentan valores de emisiones específicos (4.13 y 4.77 kg CO₂e/kg de café oro, respectivamente) similares a los rangos encontrados en Costa Rica y Colombia. La **finca Buenos Aires** muestra una eficiencia notablemente mayor con solo 2.41 kg CO₂e/kg de café oro, lo que sugiere prácticas agrícolas más sostenibles o eficiencias de escala significativas. En Brasil, un estudio reportó emisiones de aproximadamente 6.6 kg CO₂e/kg de café verde en sistemas de cultivo convencionales. En comparación, nuestras fincas presentan emisiones más bajas, especialmente Buenos Aires, que tiene menos de la mitad de la huella de carbono reportada en Brasil. Esto indica una potencial ventaja en prácticas de manejo y procesamiento en nuestras fincas evaluadas.

Los resultados obtenidos muestran que, aunque las fincas cafetaleras en nuestro estudio presentan emisiones específicas de CO₂e comparables a las encontradas en estudios similares

en América Latina, existe un potencial significativo para reducir aún más estas emisiones mediante la adopción de prácticas agrícolas más sostenibles y tecnologías avanzadas. La finca Buenos Aires, en particular, destaca como un modelo de eficiencia y sostenibilidad que podría ser emulado por otras fincas en la región.

Sistema de registro y reporte

En la presente sección, se detallan los resultados obtenidos y se discuten los hallazgos relevantes del sistema de registro y reporte de huella de carbono implementado en tres fincas. El objetivo de este sistema fue valorar el alcance de las emisiones de gases de efecto invernadero (GEI) de cada una de las fincas, proporcionando una base sólida para la toma de decisiones y la implementación de prácticas agrícolas más sostenibles.

Para llevar a cabo esta valoración exhaustiva, se realizaron los siguientes registros en cada finca: **Cantidad de fertilizante utilizado:** Se documentó minuciosamente el tipo y la cantidad de fertilizantes aplicados, ya que estos insumos son una fuente significativa de emisiones de óxido nitroso, un potente GEI.

Producción de café (en quintales): La producción total de café se cuantificó para relacionarla con las emisiones generadas por unidad de producto, lo que permite identificar la eficiencia y sostenibilidad de cada finca en términos de producción y emisiones.

Generación de agua miel: Se registró la cantidad de agua miel producida durante el proceso de beneficio del café, un subproducto que puede tener impactos ambientales si no se maneja adecuadamente.

Consumo de energía: Se midió y registró el consumo de energía de cada finca, incluyendo fuentes de energía renovable y no renovable, ya que la energía es un factor clave en la huella de carbono total.

Propósito y Beneficios del Registro Detallado

El propósito de llevar a cabo estos registros detallados fue doble. Primero, se buscó obtener una comprensión integral y precisa de las fuentes de emisiones de cada finca. Al tener datos

específicos sobre el uso de fertilizantes, producción de café, generación de agua miel y consumo de energía, se pudo calcular de manera más exacta la huella de carbono de cada finca. Este nivel de detalle permite identificar áreas críticas donde las emisiones pueden ser reducidas de manera efectiva. Segundo, estos registros proporcionan una base de datos robusta que puede ser utilizada para comparar la eficiencia y sostenibilidad de diferentes prácticas agrícolas. Esto no solo beneficia a las fincas individuales al permitirles mejorar sus prácticas y reducir sus emisiones, sino que también contribuye al conocimiento general sobre cómo las prácticas agrícolas afectan la huella de carbono.

La implementación de este sistema de registro y reporte no solo permite una evaluación precisa de las emisiones actuales, sino que también facilita el seguimiento de los progresos a lo largo del tiempo. Las fincas pueden utilizar estos datos para establecer metas de reducción de emisiones, implementar prácticas más sostenibles y verificar la efectividad de las intervenciones realizadas. En conclusión, la recolección detallada de datos en estas tres fincas ha sido fundamental para la evaluación precisa de su huella de carbono. Este enfoque no solo mejora la comprensión de las emisiones generadas por la producción de café, sino que también promueve la adopción de prácticas agrícolas más sostenibles, beneficiando tanto al medio ambiente como a la viabilidad económica de las fincas a largo plazo.

XI. CONCLUSIÓN

En conclusión, el análisis completo de la huella de carbono en las fincas estudiadas revela la importancia de implementar prácticas sostenibles en la producción agrícola. Los datos obtenidos, tras una combinación de métodos que incluyeron la recolección de información en campo, capacitación con trabajadores y productores, validación en el programa **Cool Farm Tool** y la automatización de información en **Power BI**, muestran que las emisiones de CO₂ varían significativamente entre las fincas. Es evidente que la Finca Buenos Aires presenta la mayor huella de carbono, seguida de la Finca La Chiripa y la Finca Las Cabañas. Estos hallazgos subrayan la necesidad de implementar estrategias específicas para reducir las emisiones de gases de efecto invernadero en la caficultura, contribuyendo así a la mitigación del cambio climático y al desarrollo de sistemas agrícolas más sostenibles.

El análisis detallado de la huella de carbono en las fincas estudiadas revela la complejidad de los factores que influyen en las emisiones de CO₂ en la caficultura. Además de las emisiones directas asociadas con la actividad agrícola, como el uso de maquinaria y la aplicación de fertilizantes, también se deben considerar los impactos indirectos, como el transporte de insumos y productos, la gestión de residuos y la deforestación asociada con la expansión de tierras de cultivo. Estos hallazgos resaltan la importancia de adoptar un enfoque global para abordar la huella de carbono en la agricultura, que incluya medidas para mejorar la eficiencia energética, promover prácticas agrícolas regenerativas y fomentar la conservación de los recursos naturales. Al hacerlo, no solo se reducirán las emisiones de gases de efecto invernadero, sino que también se fortalecerá la resiliencia de los sistemas agrícolas ante los impactos del cambio climático y se promoverá la sostenibilidad a largo plazo en el sector agrícola.

XII. RECOMENDACIONES

Dada la complejidad de los factores que contribuyen a la huella de carbono en la agricultura, se recomienda implementar una serie de medidas integrales para reducir las emisiones de CO₂ y promover la sostenibilidad en el sector cafetalero. Esto incluye la adopción de prácticas agrícolas regenerativas, como la agricultura de conservación, que pueden ayudar a mejorar la salud del suelo y reducir la dependencia de insumos externos, lo que a su vez disminuye las emisiones asociadas con su producción y transporte.

Además, se sugiere invertir en tecnologías y prácticas que mejoren la eficiencia energética en la agricultura, como el uso de energías renovables y la optimización de procesos de riego y fertilización. También es importante fomentar la conservación de los recursos naturales, incluida la protección de áreas de bosques y la implementación de prácticas de gestión de residuos.

Basándonos en los resultados obtenidos y la necesidad de abordar la huella de carbono de manera integral, se sugieren acciones específicas para cada finca con el objetivo de reducir las emisiones de CO₂ y promover la sostenibilidad en el sector cafetalero.

Para la **Finca Buenos Aires**, se recomienda implementar prácticas agrícolas regenerativas, como la agricultura de conservación para mejorar la salud del suelo y reducir la dependencia de insumos externos. Además, se sugiere invertir en tecnologías que mejoren la eficiencia energética, como el uso de energías renovables y la optimización de procesos de riego y fertilización.

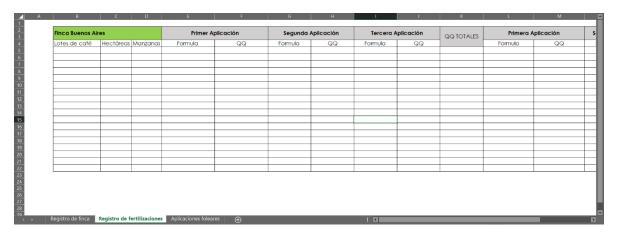
Para la **Finca La Chiripa**, se sugiere enfocarse en la reducción del uso de insumos agrícolas y la adopción de prácticas de gestión integrada de plagas y enfermedades, lo que puede ayudar a reducir las emisiones asociadas con su producción y transporte. Además, se recomienda explorar opciones para mejorar la eficiencia en el transporte de productos agrícolas hacia los mercados.

Para la **Finca Las Cabañas**, se sugiere enfocarse en la conservación de los recursos naturales, incluida la protección de áreas de bosques y la implementación de prácticas de gestión de residuos. Además, se recomienda explorar opciones para la diversificación de cultivos y la integración de sistemas agroforestales, lo que puede contribuir a una menor huella de carbono y una mayor resiliencia del sistema agrícola.

XIII. BIBLIOGRAFÍA

- Altieri, M. (1999). *Bases científicas para una agricultura sustentable*. Montevideo: Nordan—Comunidad.
- Cabrera, V. (2007). El Cafe en Nicaragua. Experiencias de producción y exportación en comercio justo. Nicaragua.
- Comisión Económica para América Latina y El Caribe. (2012). *Políticas ante las adversidades de la economía internacional*. America Latina: Cepal.
- Cuadra, S. (2018). Café en Nicaragua. Nicaragua.
- Enri. (1969). Introducción a ArcGIS. Redlands, California, United States.
- Hernandez. (2006). Cambio Climatico. Buenos aires, Argentina.
- Hillier, W. (2011). A farmfocused calculator for emissions from crop and livestock production. Environmental Modelling & Software. United King.
- Internacional, C. d. (2012). Huella de Carbono de Productos Agrícolas. Suiza.
- IPCC. (2007). *Cambio climático 2007*. Estados Unidos: Grupo Intergubernamental de Expertos sobre el Cambio Climático, 2008.
- Isaza, C. H. (2014). Cambio Climatico y su impacto en el cultivo de café. Colombia.
- Mena, V. E. (2011). Biomasa y carbono almacenado. Costa Rica.
- Microsoft. (2013). *Power Bi*. Obtenido de Power Bi: https://powerbi.microsoft.com/eses/what-is-power-bi/
- ORGANIZATION, I. C. (2021). COFFEE. NEW YORK.
- RESEARCH, W. C. (2015). Movimiento del café alrededor del mundo. United States.
- Samper, L. F. (2017). El poderoso papel de los intangibles en la cadena de valor del café. Colombia.
- Schneider, H., & Samaniego, J. (2009). *La huella del carbono la producción, distribución y consumo de bienes y servicios*. Chile: Naciones Unidas, Chile.
- Soliva, C. (2017). Measuring Methane Emission of Ruminants. Zurich, Switzerland.

XIV. ANEXOS


Anexo 1. Sistema de registro y reporte GEI

Anexo 2. Registro de información de fincas

Anexo 3. Validación de información GEI

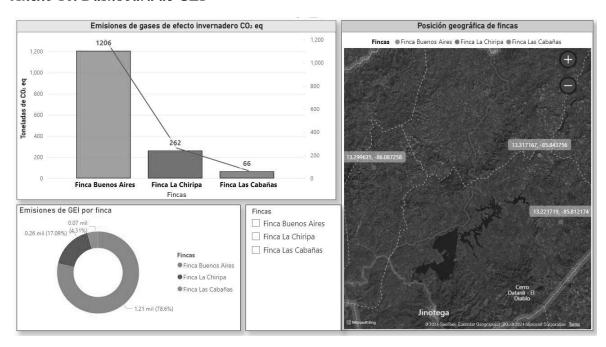
Anexo 4. Capacitación a trabajadores de finca

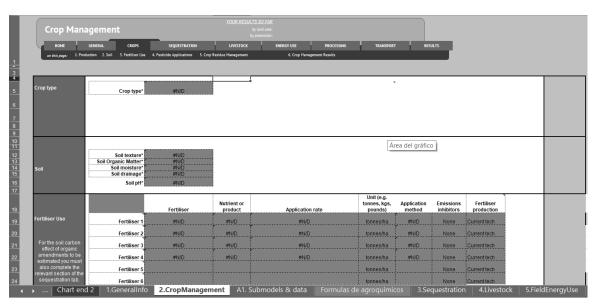
Anexo 5. Capacitación de personal administrativo finca Buenos Aires

Anexo 6. Capacitación a trabajadores

Anexo 7. Hoja de entrevista a trabajadores

Hoja de Campo-Entrevista				
Nombre y apellidos: Cedula:	Objetivo de l	la entrevista:		
Cargo en la finca:				
Preguntas:	Si	No	Observaciones	
¿Están al tanto del significado de Huella de Carbono?				
¿Están conscientes del impacto ambiental de las prácticas agrícolas que se llevan a cabo en la finca y cómo pueden influir en las emisiones de carbono?				
¿Cuánto conocimiento tienen sobre cómo los diferentes procesos de producción, desde la cosecha hasta el procesamiento del café, afectan la huella de carbono de la finca?				
¿Están familiarizados con las prácticas de manejo de residuos en la finca y cómo estas pueden desempeñar un papel en la reducción de la huella de carbono?				
¿Tienen conocimiento de las iniciativas o prácticas sostenibles en la finca que se han implementado para reducir la huella de carbono y han observado algún impacto?				
¿Cómo se aborda la concientización y educación ambiental entre los trabajadores de la finca para que estén informados sobre la minimización de la huella de carbono?				
¿Tienen percepción de cómo la huella de carbono de la finca afecta a la comunidad local y están conscientes de las medidas tomadas para mitigar posibles impactos negativos?				


Anexo 8. Visita a finca Buenos Aires


Anexo 9. Visita a plantaciones de la finca La Cabaña

Anexo 10. Dashboard de GEI

Anexo 11. Calculadora de huella de carbono

